Finding the approximate roots values of a real roots polynomial equation.

Theorem 1. Sum of roots.

In an equation,

 $A_n X^n + A_{n-1} X^{n-1} \dots A_3 X^3 + A_2 X^2 + A_1 X^1 + A_0 = 0,$

Whose roots are real and negative. $A_1, A_2, A_3 \dots A_{n-1}, A_n$ are the coefficients of

 X^1 , X^2 , X^3 X^{n-1} , X^n respectively. n is the highest power of the equation.

 $A_n = 1$, A_0 is a constant.

-a, -b, -c, -dare the roots of the equation in ascending order.

In this equation,

1.
$$a > \frac{A0}{A1}$$
 & $a \le n \times \frac{A0}{A1}$
2. $a+b > \frac{A1}{A2}$ & $a+b \le (n-1)\frac{A1}{A2}$
3. $a+b+c > \frac{A2}{A3}$ & $a+b+c \le (n-2)\frac{A2}{A3}$
And so on.

.....

Theorem 2. Multiplication of roots.

In an equation

 $A_n X^n + A_{n-1} X^{n-1} \dots A_3 X^3 + A_2 X^2 + A_1 X^1 + A_0 = 0$,

Whose roots are real and negative. A1, A2, A3 An-1, An are the coefficients of

 $X^1, X^2, X^3, \dots, X^{n-1}, X^n$ respectively. n is the highest power of the equation.

 $A_n = 1$, A_0 is a constant.

-a, -b, -c, -dare the roots of the equation in ascending order.

In this equation,

1.
$$a > \frac{A0}{A1}$$
 & $a \le nc1\frac{A0}{A1}$
2. $ab > \frac{A0}{A2}$ & $ab \le nc2\frac{A0}{A2}$
3. $abc > \frac{A0}{A3}$ & $abc \le nc3\frac{A0}{A3}$

And so on.

The values of nc1,nc2, nc3 are the corresponding values in Pascal's pyramid.

.....

Example 1.

$$X^{3}$$
+10 X^{2} +31 X +30 = 0

(The roots are -2,-3,-5.)

 $A_0=30$, $A_1=31$, $A_2=10$, $A_3=1$, n=3.

As per theoram 1,

1.
$$a > \frac{A0}{A1}$$
 & $a \le n \frac{A0}{A1}$
 $a > \frac{30}{31} = 0.96$ & $a \le 3 \times 0.96 = 2.88$

a is between 0.96 and 2.88 which is correct. (a = 2)

2. $a+b > \frac{A1}{A2}$ & $a+b \le (n-1)\frac{A1}{A2}$ $a+b > \frac{31}{10} = 3.1$ & $a+b \le 2 \times 3.1 = 6.2$

a+b is between 3.1 and 6.2 which is correct (a+b=2+3=5)

3. $a+b+c > \frac{A2}{A3}$ & $a+b+c \le (n-2)\frac{A2}{A3}$ $a+b+c > \frac{10}{1} = 10$ & $a+b+c \le 1 \times 10 = 10$ a+b+c is 10, which is correct (a+b+c = 2+3+5 = 10)

.....

As per theoram 2,

1.
$$a > \frac{A0}{A1}$$
 & $a \le nc1\frac{A0}{A1}$
 $a > \frac{30}{31} = 0.96$ & $a \le 3 \times 0.96 = 2.88$

a is between 0.96 and 2.88 which is correct. (a = 2)

2. $ab > \frac{A0}{A2}$ & $ab \le nc2\frac{A0}{A2}$ $ab > \frac{30}{10} = 3$ & $ab \le 3 \times 3 = 9$

ab is between 3 and 9which is correct. ($ab = 2 \times 3 = 6$)

3. $abc > \frac{A0}{A3}$ & $abc \le nc3\frac{A0}{A3}$ $abc > \frac{30}{1} = 30$ & $abc \le 1 \times 30 = 30$

abc is 30, which is correct. ($abc = 2 \times 3 \times 5 = 30$)

Pascal's pyramid

Example 2.

$$X^4$$
+30 X^3 +301 X^2 +1140 X +1300 = 0 ,
(The roots are -2, -5,-10,-13.)
 A_0 =1300, A_1 = 1140, A_2 = 301, , A_3 = 30, A_4 = 1, n = 4.

As per theoram 1,

1. $a > \frac{A0}{A1}$ & $a \le n \frac{A0}{A1}$ $a > \frac{1300}{1140} = 1.14$ & $a \le 4 \times 1.14 = 4.56$

a is between 1.14 and 4.56 which is correct. (a = 2)

2.
$$a+b > \frac{A1}{A2} \& a+b \le (n-1)\frac{A1}{A2}$$

 $a+b > \frac{1140}{301} = 3.78 \& a+b \le 3 \times 3.78 = 11.34$

a+b is between 3.78 and 11.34 which is correct (a+b = 2+5=7)

3. $a+b+c > \frac{A2}{A3}$ & $a+b+c \le (n-2)\frac{A2}{A3}$ $a+b+c > \frac{301}{30} = 10.03$ & $a+b+c \le 2 \times 10.03 = 20.06$

a+b+c is between 10.03 and 20.06 which is correct (a+b+c = 2+5+10 = 17)

4. $a+b+c+d > \frac{A3}{A4}$ & $a+b+c+d \le (n-3)\frac{A3}{A4}$ $a+b+c+d > \frac{30}{1} = 30$ & $a+b+c+d \le 1 \times 30 = 30$ a+b+c+d is 30 which is correct (a+b+c+d = 2+5+10+13 = 30)

As per theoram 2,

1.
$$a > \frac{A0}{A1}$$
 & $a \le nc1 \frac{A0}{A1}$
 $a > \frac{1300}{1140} = 1.14$ & $a \le 4 \times 1.14 = 4.56$

a is between 1.14 and 4.56 which is correct. (a = 2)

2.
$$ab > \frac{A0}{A2} & ab \le nc2\frac{A0}{A2}$$

 $ab > \frac{1300}{301} = 4.31 & ab \le 6 \times 4.31 = 25.86$

ab is between 4.31 and 25.86 which is correct. ($ab = 2 \times 5 = 10$)

3.
$$abc > \frac{A0}{A3}$$
 & $abc \le nc3\frac{A0}{A3}$
 $abc > \frac{1300}{30} = 43.33$ & $abc \le 4 \times 43.33 = 173.32$

abc is between 43.33 and 173.32 which is correct ($abc = 2 \times 5 \times 10 = 100$)

4. $abcd > \frac{A0}{A4}$ & $abcd \le nc4\frac{A0}{A4}$ $abcd > \frac{1300}{1} = 1300$ & $abcd \le 1 \times 1300 = 1300$

abcd is 1300 which is correct (abcd = 2×5×10×13 =1300)

Pascal pyramid

Solving all roots of an equation at one calcuation.

Example.

 $X^3 + 10x^2 + 31x + 30 = 0$ equation 1.

Sqrare the roots of the equation 4 times to form new equation.

 $X^3 + 38x^2 + 36x + 900 = 0$ equation 2.

 $X^3 + 722x^2 + 61921x + 900 = 0$ equation 3.

 $X^{3} + 397442x^{2} + 26645702 \times 10^{2}x + 65610000 \times 10^{4} = 0$ equation 4.

 X^{3} + 15233100×10⁴ x² + 657841117×10¹⁰x + 43046721×10¹⁶ = 0equation 5.

Solving equation 5.

 $X^3 + 15233100 \times 10^4 x^2 + 657841117 \times 10^{10}x + 43046721 \times 10^{16} = 0$ equation 5. As per Theorem 1 (sums of roots),

$$a > \frac{A_0}{A_1}$$
 & $a \le n \times \frac{A_0}{A_1}$
 $A_0 = 43046721 \times 10^{16}$, $A_1 = 657841117 \times 10^{10}$, $A_2 = 15233100 \times 10^4$, $A_3 = 1$, $n = 3$.

a of equation 5 $> \frac{43046721 \times 10^{16}}{657841117 \times 10^{10}} = 65436$ (a of equation 5 $\le 3 \times 65436 = 196308$)

2.....

a of equation $1 > (65436)^{1/16} = 1.99 \cong 2.$ (a of equation $1 \le (196308)^{1/16} = 2.14$)

-2 is the root of equation 1. (and verified)

2.
$$a+b > \frac{A1}{A2}$$
 & $a+b \le (n-1)\frac{A1}{A2}$

a+b of equation $5 > a+b > \frac{657841117 \times 10^{10}}{15233100 \times 10^{14}} = 43184979$ (a+b of equation $5 \le 2 \times 43184979$ = 86369959)

b of equation 5 > 43184979 - 65436 = 43119543 (b of equation $5 \le 86369959 - 196308 = 86173651$)

b of equation $1 > b > (43119543)^{1/16} = 3.00$ (b of equation $1 \le (86173651)^{1/16} = 3.13$)

-3 is a root of equation 1 and verified.

C = 10 - 2 - 3 = 5

-5 is root of the equation 1.

The roots of equation 1 are -2,-3,-5.

For more, visit rkmath.yolasite.com

......END 16.02.2016.....