Finding the approximate roots values of a real roots polynomial equation.

Theorem 1. Sum of roots.

In an equation,
$A_{n} X^{n}+A_{n-1} X^{n-1}$. $A_{3} X^{3}+A_{2} X^{2}+A_{1} X^{1}+A_{0}=0$,

Whose roots are real and negative. $A_{1}, A_{2}, A_{3} \ldots \ldots . . A_{n-1}, A_{n}$ are the coefficients of $X^{1}, X^{2}, X^{3} \ldots \ldots \ldots . X^{n-1}, X^{n}$ respectively. n is the highest power of the equation.
$A_{n}=1, A_{0}$ is a constant.
$-a,-b,-c,-d$.......are the roots of the equation in ascending order.
In this equation,

1. $\mathrm{a}>\frac{\mathrm{A} 0}{\mathrm{~A} 1}$ \& $\mathrm{a} \leq \mathrm{n} \times \frac{\mathrm{A} 0}{\mathrm{~A} 1}$
2. $\mathrm{a}+\mathrm{b}>\frac{\mathrm{A} 1}{\mathrm{~A} 2} \& \mathrm{a}+\mathrm{b} \leq(\mathrm{n}-1) \frac{\mathrm{A} 1}{\mathrm{~A} 2}$
3. $\mathrm{a}+\mathrm{b}+\mathrm{c}>\frac{\mathrm{A} 2}{\mathrm{~A} 3} \& \mathrm{a}+\mathrm{b}+\mathrm{c} \leq(\mathrm{n}-2) \frac{\mathrm{A} 2}{\mathrm{~A} 3}$

And so on.

Theorem 2. Multiplication of roots.

In an equation
$A_{n} X^{n}+A_{n-1} X^{n-1} \ldots \ldots \ldots . A_{3} X^{3}+A_{2} X^{2}+A_{1} X^{1}+A_{0}=0$,
Whose roots are real and negative. $A_{1}, A_{2}, A_{3} \ldots \ldots . . A_{n-1}, A_{n}$ are the coefficients of $X^{1}, X^{2}, X^{3} \ldots \ldots \ldots . X^{n-1}, X^{n}$ respectively. n is the highest power of the equation.
$A_{n}=1, A_{0}$ is a constant.
$-a,-b,-c,-d \ldots . .$. are the roots of the equation in ascending order.

In this equation,

1. $\mathrm{a}>\frac{A 0}{A 1}$ \& $\mathrm{a} \leq n c 1 \frac{A 0}{A 1}$
2. $\mathrm{ab}>\frac{A 0}{A 2} \& \mathrm{ab} \leq n c 2 \frac{A 0}{A 2}$
3. $\mathrm{abc}>\frac{A 0}{A 3} \& \mathrm{abc} \leq n c 3 \frac{A 0}{A 3}$

And so on.
The values of nc1,nc2, nc3 \qquad are the corresponding values in Pascal's pyramid.

Example 1.
$x^{3}+10 x^{2}+31 x+30=0$
(The roots are $-2,-3,-5$.)
$A_{0}=30, A_{1}=31, A_{2}=10, A_{3}=1, n=3$.

As per theoram 1,

1. $\mathrm{a}>\frac{A 0}{A 1} \& \mathrm{a} \leq \mathrm{n} \frac{A 0}{A 1}$
$a>\frac{30}{31}=0.96 \& a \leq 3 \times 0.96=2.88$
a is between 0.96 and 2.88 which is correct. ($\mathrm{a}=2$)
2. $\mathrm{a}+\mathrm{b}>\frac{A 1}{A 2} \& \mathrm{a}+\mathrm{b} \leq(n-1) \frac{A 1}{A 2}$
$a+b>\frac{31}{10}=3.1 \& a+b \leq 2 \times 3.1=6.2$
$a+b$ is between 3.1 and 6.2 which is correct $(a+b=2+3=5)$
3. $\mathrm{a}+\mathrm{b}+\mathrm{c}>\frac{A 2}{A 3} \& \mathrm{a}+\mathrm{b}+\mathrm{c} \leq(n-2) \frac{A 2}{A 3}$
$a+b+c>\frac{10}{1}=10 \& a+b+c \leq 1 \times 10=10$
$a+b+c$ is 10, which is correct $(a+b+c=2+3+5=10)$

As per theoram 2,

1. $\mathrm{a}>\frac{A 0}{A 1} \& \mathrm{a} \leq n c 1 \frac{A 0}{A 1}$
a $>\frac{30}{31}=0.96 \& a \leq 3 \times 0.96=2.88$
a is between 0.96 and 2.88 which is correct. ($\mathrm{a}=2$)
2. $\mathrm{ab}>\frac{A 0}{A 2} \& \mathrm{ab} \leq n c 2 \frac{A 0}{A 2}$ $a b>\frac{30}{10}=3 \& a b \leq 3 \times 3=9$ $a b$ is between 3 and 9 which is correct. $(a b=2 \times 3=6)$
3. $\mathrm{abc}>\frac{A 0}{A 3} \& \mathrm{abc} \leq n c 3 \frac{A 0}{A 3}$
$\mathrm{abc}>\frac{30}{1}=30 \& \mathrm{abc} \leq 1 \times 30=30$
abc is 30 , which is correct. $(a b c=2 \times 3 \times 5=30)$

Pascal's pyramid

$$
\begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array}
$$

$$
\begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
$$

Example 2.

$$
x^{4}+30 x^{3}+301 x^{2}+1140 x+1300=0
$$

(The roots are $-2,-5,-10,-13$.)
$A_{0}=1300, A_{1}=1140, A_{2}=301, A_{3}=30, A_{4}=1, n=4$.

As per theoram 1,

1. $\mathrm{a}>\frac{A 0}{A 1} \& \mathrm{a} \leq \mathrm{n} \frac{A 0}{A 1}$
$a>\frac{1300}{1140}=1.14 \& a \leq 4 \times 1.14=4.56$
a is between 1.14 and 4.56 which is correct. ($\mathrm{a}=2$)
2. $\mathrm{a}+\mathrm{b}>\frac{A 1}{A 2} \& \mathrm{a}+\mathrm{b} \leq(n-1) \frac{A 1}{A 2}$
$a+b>\frac{1140}{301}=3.78 \& a+b \leq 3 \times 3.78=11.34$
$a+b$ is between 3.78 and 11.34 which is correct ($a+b=2+5=7$)
3. $\mathrm{a}+\mathrm{b}+\mathrm{c}>\frac{A 2}{A 3} \& \mathrm{a}+\mathrm{b}+\mathrm{c} \leq(n-2) \frac{A 2}{A 3}$
$a+b+c>\frac{301}{30}=10.03 \& a+b+c \leq 2 \times 10.03=20.06$
$a+b+c$ is between 10.03 and 20.06 which is correct ($a+b+c=2+5+10=17$)
4. $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}>\frac{A 3}{A 4} \& \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d} \leq(n-3) \frac{A 3}{A 4}$
$a+b+c+d>\frac{30}{1}=30 \& a+b+c+d \leq 1 \times 30=30$
$a+b+c+d$ is 30 which is correct $(a+b+c+d=2+5+10+13=30)$

As per theoram 2,

1. $\mathrm{a}>\frac{A 0}{A 1} \& \mathrm{a} \leq \operatorname{nc} \frac{A 0}{A 1}$
$a>\frac{1300}{1140}=1.14 \& a \leq 4 \times 1.14=4.56$
a is between 1.14 and 4.56 which is correct. ($\mathrm{a}=2$)
2. $\mathrm{ab}>\frac{A 0}{A 2} \& \mathrm{ab} \leq n c 2 \frac{A 0}{A 2}$
$a b>\frac{1300}{301}=4.31 \& a b \leq 6 \times 4.31=25.86$
ab is between 4.31 and 25.86 which is correct. ($\mathrm{ab}=2 \times 5=10$)
3. $\mathrm{abc}>\frac{A 0}{A 3} \& \mathrm{abc} \leq n c 3 \frac{A 0}{A 3}$
$a b c>\frac{1300}{30}=43.33 \& a b c \leq 4 \times 43.33=173.32$
abc is between 43.33 and 173.32 which is correct ($a b c=2 \times 5 \times 10=100$)
4. abcd $>\frac{A 0}{A 4} \& \operatorname{abcd} \leq n c 4 \frac{A 0}{A 4}$
$\operatorname{abcd}>\frac{1300}{1}=1300 \& a b c d \leq 1 \times 1300=1300$
abcd is 1300 which is correct ($a b c d=2 \times 5 \times 10 \times 13=1300$)

Pascal pyramid

$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$

Solving all roots of an equation at one calcuation.

Example.

$x^{3}+10 x^{2}+31 x+30=0$.equation 1.

Sqrare the roots of the equation 4 times to form new equation.
$x^{3}+38 x^{2}+36 x+900=0$ \qquad .equation 2.
$x^{3}+722 x^{2}+61921 x+900=0$ \qquad .equation 3.
$X^{3}+397442 x^{2}+26645702 \times 10^{2} x+65610000 \times 10^{4}=0$ \qquad equation 4.
$x^{3}+15233100 \times 10^{4} x^{2}+657841117 \times 10^{10} x+43046721 \times 10^{16}=0$ \qquad .equation 5.

Solving equation 5.
$x^{3}+15233100 \times 10^{4} x^{2}+657841117 \times 10^{10} x+43046721 \times 10^{16}=0$ \qquad .equation 5. As per Theorem 1 (sums of roots),

$$
\begin{aligned}
& a>\frac{A 0}{A 1} \& a \leq n \times \frac{A 0}{A 1} \\
& A_{0}=43046721 \times 10^{16}, A_{1}=657841117 \times 10^{10}, A_{2}=15233100 \times 10^{4}, A_{3}=1, n=3 .
\end{aligned}
$$

a of equation $5>\frac{43046721 \times 10^{\wedge} 16,}{657841117 \times 10^{\wedge} 10}=65436 \quad($ a of equation $5 \leq 3 \times 65436=196308)$
a of equation $1>(65436)^{1 / 16}=1.99 \cong 2 . \quad\left(\right.$ a of equation $\left.1 \leq(196308)^{1 / 16}=2.14\right)$
-2 is the root of equation 1 . (and verified)
2. $a+b>\frac{A 1}{A 2} \quad \& a+b \leq(n-1) \frac{A 1}{A 2}$
$a+b$ of equation $5>a+b>\frac{657841117 \times 10^{\wedge 10}}{15233100 \times 10^{\wedge} 4}=43184979 \quad$ ($a+b$ of equation $5 \leq 2 \times 43184979$ = 86369959)
b of equation $5>43184979-65436=43119543 \quad$ (b of equation $5 \leq 86369959-196308=$ 86173651)
b of equation $1>b>(43119543)^{1 / 16}=3.00 \quad\left(b\right.$ of equation $\left.1 \leq(86173651)^{1 / 16}=3.13\right)$
-3 is a root of equation 1 and verified.
$C=10-2-3=5$
-5 is root of the equation 1 .

The roots of equation 1 are $-2,-3,-5$.

For more, visit rkmath.yolasite.com

END 16.02.2016.

