A simple and unique approach

in solving polynomial equations

- root $^{\prime} r^{\prime}=\frac{K}{Z}+(n-1) \frac{K}{Z} R \quad$ op-root $r^{\prime} r^{\prime} \frac{K}{Z}+(n-1) \frac{K}{Z} R$

New And Simple Methods Of

Solving Polynomial Equations

(ALL REAL ROOTS)
(10 new theorems and many new definitions.)
PART-1 (M) By
(Appendix)

Please send your comments to
E-mail ID: emmaths@gmail.com
Radhakrishnan.J. kovur Chennai - 602101

TamilNadu,India.

This is an appendix to

‘NEW AND SIMPLE METHODS OF SOLVING POLYNOMIAL EQUATIONS'
(ALL REAL ROOTS) PART-1(M)

Solving non-integer coefficient equation.

1. $X^{3}+\frac{15}{2} X^{2}+\frac{86}{9} X+\frac{10}{3}=0 \quad$ equation --------- 1 .

$$
X^{3}+7.5 X^{2}+9.5555 X+3.3333=0 \text { equation }-------2
$$

Assume, using my methods, we get the following answers.
The op-roots are

$$
r_{1}=0.6666, r_{2}=0.8333, \text { and } r_{3}=6
$$

Remove all integer and irrational roots in the original equation (1) if any.

6 | 1 | $\frac{15}{2}$ | $\frac{86}{9}$ | $\frac{10}{3}$ |
| :---: | :---: | :---: | :---: |
| 0 | 6 | 9 | $\frac{10}{3}$ |
| 1 | $\frac{3}{2}$ | $\frac{5}{9}$ | 0 |

$$
x^{2}+\frac{3}{2} X+\frac{5}{9}=0
$$

Make a fraction where the numerator is F and the denominator is the big denominator of the coefficients. $=\frac{\mathrm{F}}{9}$.

$$
\begin{aligned}
& r_{1}=0.6666 \\
& r_{1}=\frac{F}{9}=0.6666
\end{aligned}
$$

$$
\begin{aligned}
& F=5.9994 \\
& r_{1}=\frac{6}{9}=\frac{2}{3}, \\
& r_{2}=\frac{F}{9}=0.8333, \\
& F=7.4999 \\
& r_{1}=\frac{7.5}{9}=\frac{15}{18}=\frac{5}{6},
\end{aligned}
$$

The answers are verified and found correct.

The op-roots are

$$
r_{1}=\frac{2}{3}, r_{2}=\frac{5}{6}, \text { and } r_{3}=6 .
$$

The roots are

$$
r_{1}=-\left(\frac{2}{3}\right), r_{2}=-\left(\frac{5}{6}\right), \text { and } r_{3}=--6 .
$$

Some more examples with details, in PART2.

